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Abstract
In quasi-exactly solvable problems partial analytic solutions (energy spectrum
and associated wavefunctions) are obtained if some potential parameters are
assigned specific values. We introduce a new class in which exact solutions are
obtained at a given energy for a special set of values of the potential parameters.
To obtain a larger solution space one varies the energy over a discrete set (the
spectrum) by simply changing the value of a given integer. A unified treatment
that includes the standard as well as the new class of quasi-exactly solvable
problems is presented and a few examples are given. The solution space is
spanned by discrete square integrable basis functions in which the matrix
representation of the Hamiltonian is tridiagonal. Consequently, the wave
equation gives a three-term recursion relation for the expansion coefficients
of the wavefunction. Imposing quasi-exact solvability constraints results in a
complete reduction of the representation to the direct sum of a finite and an
infinite component. The finite is real and exactly solvable, whereas the infinite
is complex and associated with zero norm states. Consequently, the whole
physical space contracts to a finite-dimensional subspace with normalizable
states.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca, 02.30.Gp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One may choose not to disagree with the view that exactly solvable systems are, by some
(debatable) definitions, trivial. Nonetheless, an advantage of obtaining exact solutions of the
wave equation is that the analysis of such solutions makes the conceptual understanding of
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physics straightforward and sometimes intuitive. Moreover, these solutions are valuable means
for checking and improving models and numerical methods introduced for solving complicated
physical systems. In fact, in some limiting cases or for some special circumstances they may
constitute analytic solutions of realistic problems or approximations thereof. In the exactly
solvable class of problems, full analytic solutions (energy spectrum and associated state
functions) could be obtained for a continuous range of values of the physical parameters of the
system. However, elements of this class must be endowed with a high degree of symmetry and
are, in fact, very limited in number. Most of the known exactly solvable problems fall within
distinct classes of, what is referred to as, ‘shape invariant potentials’ [1]. Each class carries a
representation of a given symmetry group. Elements of the solutions in each class could be
transformed into one another by the action of the operators of the associated symmetry algebra.
Supersymmetric quantum mechanics, potential algebras, point canonical transformations and
path integration are four methods among many which are used in the search for exact solutions
of the wave equation. In nonrelativistic quantum mechanics, these developments were carried
out over the years by many researchers where several of these solutions are accounted for and
tabulated (see [1] and references cited therein). This class includes dynamical systems with
potentials like the Coulomb, oscillator, Morse, Pöschl–Teller, Hulthén, Scarf, etc.

A larger class of problems is exactly solvable only if the physical parameters of the system
are assigned specific values. Two such classes exist. In the conditionally-exactly solvable
class all energy eigenvalues and corresponding wavefunctions are obtained exactly under the
given constraint on the physical parameters [2]. However, in the quasi-exactly solvable class
of problems only partial solution is possible [3]. That is, only part of the energy spectrum and
associated wavefunctions are obtained exactly under the given parameters constraint. In this
work we introduce a new type of solutions to the latter class where the relationship between
the potential parameters and the energy is interchanged. In other words, the partial solution
is obtained at a specific energy for a special set of values of the potential parameters (referred
to, hereafter, as the ‘parameter spectrum’). Subsequently, we propose a unified treatment that
covers both classes of quasi-exactly solvable problems in which either the potential parameters
are fixed and solutions are obtained for a set of values of the energy (energy spectrum) or
the energy is fixed and solutions are obtained for a set of values of the potential parameters
(the ‘parameter spectrum’). We show that each problem in either class is associated with a
set of polynomials, in the energy or potential parameters, that satisfy a three-term recursion
relation. These polynomials are the expansion coefficients of the wavefunction in a given
square integrable basis. However, not all energy polynomials form orthogonal sets with
respect to a positive energy measure. We also show that solvability requirements of these
problems result in a complete reduction of the representation into the direct sum of a finite and
an infinite component. The finite one is real and solvable, whereas the infinite is complex and
has zero norm states. Several examples will be given to illustrate the utility of the approach.
Some of these examples involve potentials that were not treated in such detail before.

Two types of recursion relations for the energy polynomials are obtained. We associate
with each one a class of solutions. One will be referred to as the ‘diagonal representation’
class and the other as the ‘off-diagonal representation’. In the three-term recursion relation
associated with the former class the energy variable appears, as usual, in the central term of
the recursion, whereas in the latter it appears in either one of the two end terms. The usual
class of quasi-exactly solvable problems belongs to either of the two representations whereas
the new one introduced here belongs only to the off-diagonal representation. Additionally, the
latter class is further divided into two subclasses corresponding to either of the two locations
of the energy variable in the recursion relation. For a given choice of L2 basis, it might be
possible that some of these classes or subclasses are empty. In the diagonal representation,
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two quasi-exact solvability conditions are obtained. Each one gives a different constraint
on the parameters of the problem for obtaining exact partial solutions. In the off-diagonal
representation, one of the two solvability constraints limits the quasi-exact solution to only
one value of the energy but leaves more freedom for the problem parameters to vary within
the ‘parameter spectrum’. To obtain a larger solution space in the new class one could vary
the energy over a special discrete set.

The general formulation for the proposed unified treatment of quasi-exact solvability will
be presented in the following section. Starting with a suitable basis, general conditions are
imposed such that the wave equation results in a three-term recursion relation for the expansion
coefficients of the wavefunction. Consequently, two different representations emerge. In the
diagonal representation, the energy appears linearly in the central term of the recursion.
However, in the off-diagonal representation it appears in one of the two end terms. Thereafter,
and in an essential and critical step of the approach, a transformation of the basis is performed
such that the matrix representation of the Hamiltonian (or its equivalent) becomes tridiagonal
and symmetric. Subsequently, a condition is imposed on the parameters of the problem such
that the matrix representation becomes completely reducible into a finite and an infinite part.
General reality and solvability constraints on the finite representation are found. A detailed
treatment of the diagonal representation will be carried out in section 3, where we also illustrate
explicitly the contraction of the solution space. Two sets of examples are given including new
problems that were not treated as such before (e.g., a partner to the Bender–Dunne potential
[4]). The S-wave Morse potential plus an exponentially rising term is also one of the problems
treated in the same section. One of the two subclasses in the off-diagonal representation will be
investigated in section 4, where the solvability constraint results in a solution at only one value
of the energy but for several special values of the potential parameters. This finding introduces
the concept of the ‘parameter spectrum’. The energy polynomials (expansion coefficients of
the wavefunction) do not form an orthogonal set with respect to a positive measure. One of
the examples given includes a problem with the oscillator potential plus the inverse-quartic
potential. Another includes a sum of the Coulomb and oscillator potentials. The other subclass
in the off-diagonal representation will be treated in section 5. The potential example given
there is a generalization of the Morse potential which includes not just the exponential term
and its square but its half-power as well. In the appendix extra examples are listed without
giving the details.

2. General formulation

The time-independent Schrödinger equation for a scalar particle of mass m in the field of a
potential V(x) reads as follows,[

−1

2

d2

dx2
+ V (x) − E

]
ψE(x) = 0, (2.1)

where x ∈ [x−, x+] ⊆ � and we have used the atomic units h̄ = m = 1. This is the steady-
state quantum-mechanical equation in one dimension. It could also be considered as the radial
S-wave Schrödinger equation for a particle in spherically symmetric potential where x stands
for the radial coordinate and where x− = 0 and x+ = ∞. Moreover, if V(x) contains a term
that could be written as �(� + 1)/2x2 with � = 0, 1, 2, . . . , then equation (2.1) could also
be interpreted as describing the dynamics in a spherically symmetric potential with orbital
angular momentum �. Now, for static (steady-state) probability density, the full wavefunction
belongs to the space of square integrable functions. In other words, we can always write it as a
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sum in L2 basis functions, {φn(x)}∞n=0, that are compatible with the domain of the Hamiltonian
H, where H = − 1

2
d2

dx2 + V (x). That is, we can write

ψE(x) =
∑∞

n=0
pnφn(x),

where the expansion coefficients pn are energy-dependent. With a proper choice of weight
function ω (x) we can almost always write the basis function as

φn(x) = ω(y)yµn,

for a suitable coordinate transformation y(λx), where µ and λ are real parameters and λ

positive with inverse length dimension. Square integrability requires that∫ x+

x−
φ2

n(x) dx = 1

λ

∫ y+

y−

1

y ′ ω
2y2µn dy

be finite for all n, where the prime on y means the derivative with respect to x. We define

h = 2λ−2H, v = 2λ−2V and ε = 2λ−2E.

For simplicity and economy of notation, we choose λ to be the unit of length. Thus, the action
of the wave operator H − E on the basis could be written as

(−h + ε)φn =
(

y ′2 d2

dy2
+ y ′′ d

dy
− v + ε

)
φn

= ω

[
y ′2 d2

dy2
+

(
y ′′ + 2y ′2 ω′

ω

)
d

dy
+ y ′2 ω′′

ω
+ y ′′ ω

′

ω
− v + ε

]
yµn (2.2)

where the prime on ω stands for the derivative with respect to its argument, y. Therefore, we
can rewrite the wave equation (2.1) as follows,

ω(y)

∞∑
n=0

yµn[µn(µn − 1)A(y) + µnB(y) + C(y) − v(y) + ε]pn(ε) = 0, (2.3)

where

A(y) = (y ′/y)2, B(y) = 1

y

(
y ′′ + 2y ′2 ω′

ω

)
and C(y) = y ′2 ω′′

ω
+ y ′′ ω

′

ω
.

Now, for the given basis {φn(x)}∞n=0, a solution of the system described by the wave
equation (2.1) is obtained whence the wavefunction expansion coefficients {pn(ε)}∞n=0 are
determined. Without significant loss of generality, we look for a class of solutions for which
the coefficients pn(ε) satisfy a three-term recursion relation. However, it should be clearly
stated that this, of course, does not necessarily mean that pn(ε) will be a polynomial of degree
n in ε. It is only in special circumstances where this will be the case. We will continue to deal
with the general case but limit our detailed investigation to situations where {pn(ε)}∞n=0 are,
in fact, polynomials in ε but do not necessarily form an orthogonal set. Now, equation (2.3)
does give the sought-after recursion relation if and only if (i) the functions A(y) and B(y) are
linear sum in the monomials yσ , yσ+µ and yσ−µ, where either σ = 0 or σ = ±µ, and (ii) the
potential function v(y) is chosen such that C(y) − v(y) is also proportional to yσ and yσ±µ.
If we write

A(y) = A0y
σ + A+y

σ+µ + A−yσ−µ, (2.4a)

B(y) = B0y
σ + B+y

σ+µ + B−yσ−µ, (2.4b)

C(y) − v(y) = Cv
0 yσ + Cv

+yσ+µ + Cv
−yσ−µ, (2.4c)
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where
{
A0, A±, B0, B±, Cv

0 , Cv
±
}

are real constant coefficients, then the resulting three-term
recursion relation for σ = 0 could be written as

εpn(ε) = anpn(ε) + d−
n pn−1(ε) + d+

npn+1(ε), n � 1 (2.5)

where the recursion coefficients are

−an = µn[(µn − 1)A0 + B0] + Cv
0 , (2.6a)

−d±
n = µ(n ± 1)[(µn ± µ − 1)A∓ + B∓] + Cv

∓, (2.6b)

and the initial relation (where n = 0) is

εp0(ε) = a0p0(ε) + d+
0 p1(ε).

We choose a normalization in which p0 := 1 and refer to this case, where σ = 0, as the
‘diagonal representation’. On the other hand, for σ = ±µ we obtain the following three-term
recursion relation

Cv
0 pn(ε) = ãnpn(ε) + (d−

n + εδ−)pn−1(ε) +
(
d+

n + εδ+
)
pn+1(ε), n � 1 (2.7)

where

ãn = an + Cv
0 = −µn[(µn − 1)A0 + B0],

and δ± = µ±σ

2µ
, which is either 0 or 1. The initial relation for this case is

Cv
0 p0(ε) = ã0p0(ε) +

(
d+

0 + εδ+
)
p1(ε),

with p0 := 1. This case will be referred to as the ‘off-diagonal representation’.
It must be emphasized that the three-term recursion relations (2.5) and (2.7) are equivalent

to the wave equation (2.1), (H − E)|ψE〉 = 0. More precisely, they are the matrix
representation of the wave equation in the complete L2 basis, {φn(x)}∞n=0. A solution of the
problem is completely determined whence the recursion relations (2.5) or (2.7) are solved for
the expansion coefficients {pn(ε)}∞n=0. For example, if the recursion coefficients

{
an, d

±
n

}∞
n=0

in (2.5) are known and the choice of normalization is made (e.g., p0 = 1) then all {pn(ε)}∞n=0
are determined recursively as follows:

p0 = 1, p1 = (ε − a0)/d
+
0 , (2.8a)

p2 = (
d+

1

)−1
[(ε − a1)p1 − d−

1 ], (2.8b)

p3 = (
d+

2

)−1
[(ε − a2)p2 − d−

2 p1], (2.8c)

. . . . . .

pn = (
d+

n−1

)−1
[(ε − an−1)pn−1 − d−

n−1pn−2]. (2.8d)

. . . . . .

Therefore, throughout this work we limit our investigation to these expansion coefficients.
However, due to the infinite dimensionality of the problem, an exact solution is not guaranteed.
Only when the problem is highly symmetric will such an exact solution be possible.
Nonetheless, if one finds a natural scheme of making the problem finite then an exact
partial solution is possible. In other words, if a method is devised whereby the recursion
relations (2.5) and (2.7) terminate for the first N expansion coefficients, then all {pn(ε)}N−1

n=0
will be completely determined starting with p0 = 1 giving an exact evaluation of the total
wavefunction ψε(x). Moreover, under some reality constraints the energy spectrum {εn}N−1

n=0
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could be obtained exactly by several methods, one of which as the N-dimensional set of zeros
of the polynomial pN(ε).

One can easily verify that the three-term recursion relation (2.5) for the diagonal
representation with the initial value p0 := 1 gives pn(ε) as a polynomial in ε of degree n.
On the other hand, relation (2.7) for the off-diagonal representation with σ = −µ gives pn(ε)

as a polynomial of degree n
2

(
degree n−1

2

)
for even (odd) n. However, for σ = +µ, pn(ε)

will be a ratio of a polynomial of degree n
2

(
degree n−1

2

)
over a polynomial of degree n for

even (odd) n, respectively. Nonetheless, in the off-diagonal representation (σ = ±µ) and for
a fixed value of the energy, the recursion relation (2.7) could be thought of as describing an
orthogonal polynomial set {pn(ξ)} in the ‘variable’ ξ = Cv

0 that depends on the potential
parameters. As such, several solutions are obtained at one special value of the energy
but for a set of potential parameters (the parameter spectrum) that could be calculated by
several methods, for example, from the zeros {ξn}N−1

n=0 of pN(ξ). The advantage of this
interpretation will become clear when we discuss problems related to this class in sections 4
and 5.

To give a clear and simpler physical interpretation, we make a transformation into a
new complete set of L2 basis {χn(x)} such that the corresponding expansion coefficients in
ψε(x) = ∑

n qn(ε)χn(x) satisfy the following symmetric three-term recursion relation

εqn(ε) = anqn(ε) + bn−1qn−1(ε) + bnqn+1(ε), (2.5)′

Cv
0 qn(ε) = ãnqn(ε) + cn−1qn−1(ε) + cnqn+1(ε), (2.7)′

where it is assumed (in non-degenerate representations) that bn �= 0 and cn �= 0 for all
n [5]. These two relations could easily be obtained from (2.5) and (2.7) by the mapping
qn(ε) = �npn(ε), which implies that �0 = 1 if we take q0 = 1. Moreover, in this new
representation the Hamiltonian matrix for the diagonal case (or the ‘Hamiltonian-equivalent’
matrix for the off-diagonal case) becomes tridiagonal and symmetric (i.e., Hermitian). This
is the most significant property in the new realization given by (2.5)′ and (2.7)′. It will guide
our development and base it on sound physical principles. For the diagonal representation,
the action of this map on (2.5) gives

b2
n = d+

n d−
n+1, �n+1 =

∏n

m=0

(
d+

m/d−
m+1

) 1
2 and χn(x) = �−1

n φn(x). (2.9)

On the other hand, for the off-diagonal representation we obtain

c2
n(ε) =

{(
d+

n + ε
)
d−

n+1, σ = +µ

d+
n

(
d−

n+1 + ε
)
, σ = −µ,

(2.10a)

�n+1(ε) =



∏n
m=0

[(
d+

m + ε
)/

d−
m+1

] 1
2 , σ = +µ∏n

m=0

[
d+

m

/(
d−

m+1 + ε
)] 1

2 , σ = −µ

(2.10b)

and χn(x, ε) = �−1
n (ε)φn(x), which makes the new basis elements in the off-diagonal

representation (except for χ0) energy-dependent. The three-term recursion relation (2.5)′

could be written as h|q〉 = ε|q〉, which is the matrix representation equivalent of the wave
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equation (H −E)|ψE〉 = 0 and with the following infinite tridiagonal symmetric Hamiltonian
matrix

h =




a0 b0

b0 a1 b1 0
b1 a2 b2

b2 × ×
× × ×

0 × × ×
× ×




. (2.11)

On the other hand, we can write the recursion relation (2.7)′ as h̃|q〉 = Cv
0 |q〉, which is also

equivalent to the wave equation but with the following ‘Hamiltonian-equivalent’ matrix

h̃(ε) =




ã0 c0(ε)

c0(ε) ã1 c1(ε) 0
c1(ε) ã2 c2(ε)

c2(ε) × ×
× × ×

0 × × ×
× ×




. (2.12)

The condition of existence of nontrivial solutions to the recursion relations is that det[	(ε)] =
0, where 	(ε) is the tridiagonal matrix operator defined by writing the recursion relations
(2.5)′ and (2.7)′ in a matrix form as 	|q〉 = 0. The solution of this equation (i.e., roots of
|	(ε)|) is one of the methods for obtaining the energy spectrum {εn}∞n=0.

As stated above, a given arbitrary set of parameters
{
A0, A±, B0, B±, Cv

0 , Cv
±
}

does
not guarantee an exact solution of the three-term recursion relations (2.5) and (2.7) (or,
equivalently, (2.5)′ and (2.7)′). However if, for a given positive integer N, the condition
that bN−1 = 0 or cN−1(ε) = 0, for all ε, could be satisfied by these parameters then the
matrix representation as given by equations (2.11) and (2.12) will be completely reducible
into two components. One of them is finite and associated with the N × N submatrix (top-
left corner) of h or h̃ and the other is infinite and associated with the remaining infinitely
long tail of these matrices. Under certain conditions the finite component becomes real and
completely solvable whereas the infinite component might still be unsolvable. Therefore,
the whole problem belongs to the quasi-exactly solvable class. In the following section we
investigate this situation for the diagonal representation (σ = 0) and give some examples. The
off-diagonal representation will be discussed in sections 4 and 5 for σ = −µ and σ = +µ,
respectively.

3. The diagonal representation (σ = 0)

In this representation the three-term recursion relation (2.5) or (2.5)′ results in a set of
orthogonal polynomials in the energy ε. That is, there exist a positive measure ρ(ε) such
that

∫
ρ(ε)qn(ε)qm(ε) dε = δnm. Equivalently,∫

ρ(ε)pn(ε)pm(ε) dε = �−2
n δnm. (3.1)

The condition bN−1 = 0 is equivalent to either d+
N−1 = 0 or d−

N = 0. This gives a constraint
on the parameters

{
A−, B−, Cv

−
}

or
{
A+, B+, C

v
+

}
, respectively, resulting in only special

permissible values for some of the physical parameters for obtaining the quasi-exact solutions.
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Moreover, with bN−1 = 0 the recursion relation (2.5)′ results in all polynomials qN+n(ε)

having the common factor qN(ε). That is, we obtain the factorization

qN+n(ε) = qN(ε)q̃n(ε).

This could easily be verified by noting that the recursion relation (2.5)′ for n = N gives

qN+1(ε) = [b−1
N (ε − aN)]qN(ε).

Thus, all subsequent polynomials will have qN(ε) as a common factor. This observation has
already been reported elsewhere in the literature (see, for example, page 6 of [4]). Now,
since bn does not vanish for all n except when n = N−1 and since b2

n is real, then generally
the condition bN−1 = 0 makes b2

n change sign as n jumps from N−2 to N. Consequently,
if the parameters of the problem are chosen such that b2

n > 0 for n � N − 2 (or, b2
n < 0

for n � N ), then {bn�N−2} become real and {bn�N } become pure imaginary. Moreover, the
matrix representation of the Hamiltonian shown in (2.11) becomes completely reducible as
the direct sum h = hN

0 ⊕ hN
1 , where hN

0 is the finite N × N real symmetric tridiagonal matrix,

hN
0 =




a0 b0

b0 a1 b1 0
b1 a2 b2

b2 × ×
× × ×

0 × aN−2 bN−2

bN−2 aN−1




(3.2)

and hN
1 is an infinite-dimensional complex tridiagonal matrix,

hN
1 =




aN bN

bN aN+1 bN+1 0
bN+1 aN+2 bN+2

bN+2 × ×
× × ×

0 × × ×
× ×.




. (3.3)

Consequently, the three-term recursion relation (2.5)′ splits into two disconnected and
independent relations. The finite relation reads as follows:

εqn(ε) = anqn(ε) + bn−1qn−1(ε) + bnqn+1(ε), N − 1 � n � 1, (3.4)

with q0 = 1 and the initial relation

εq0(ε) = a0q0(ε) + b0q1(ε).

Due to the fact that bN−1 = 0, the end relation (n = N−1) of (3.4) becomes

εqN−1(ε) = aN−1qN−1(ε) + bN−2qN−2(ε).

The other infinite recursion relation could be written in terms of an independent set of
polynomials q̂n(ε) := qN+n(ε) as

iεq̂n(ε) = iânq̂n(ε) + b̂n−1q̂n−1(ε) + b̂nq̂n+1(ε), n � 1 (3.5)

where ân = an+N and b̂n = i bN+n are real. The initial relation is

iεq̂0(ε) = iâ0q̂0(ε) + b̂0q̂1(ε).
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Therefore, the real solution space of the problem collapses into a finite N-dimensional space.
On the other hand, we now show that the infinite subspace has zero norm states. This statement
could be verified by studying the relation between the two bases which is given as qn = �npn

(or, χn = �−1
n φn). Now, if d+

N−1 = 0 then the formula for �n given in equation (2.9) shows
that �n�N = 0 making qn�N = 0, whereas if d−

N = 0 then �−1
n�N = 0 giving χn�N = 0.

Consequently, the infinite series expansion of the total wavefunction ψε(x) in the {χn(x)} basis
truncates into only the first N terms. Physically, this could also be understood by studying an
illustrative model in which A0 = B0 = 0 and with a trivial constant shift in the energy by
−Cv

0 (thus, an = 0). In such a model the matrix representation of the wave equation in the
space spanned by {χn}∞n=N becomes equivalent to the recursion relation

iεq̂n(ε) = b̂n−1q̂n−1(ε) + b̂nq̂n+1(ε).

This implies that a real solution exists for pure imaginary energy (i.e., ε → −i ε). Therefore,
the total time-dependent wavefunction decays in time due to the factor e−i εt . Thus, the steady-
state solution of the time-independent Schrödinger equation (2.1) vanishes and what survive
are only the finite N-dimensional solution space and its associated energy spectrum. This
contraction of the physical solution space to a finite N-dimensional subspace will be explicitly
demonstrated in the examples given below. Now, the energy spectrum {εn}N−1

n=0 could be
obtained by several equivalent methods. The following are three examples of such methods:

(1) As the eigenvalues of the N × N real symmetric tridiagonal matrix hN
0 of equation (3.2).

(2) As the zeros of the determinant of the tridiagonal matrix operator 	(ε) = hN
0 − εI , where

I is the N × N unit matrix.
(3) As the N real roots of the polynomial pN(ε).

The last one provides another insight into the physical space contraction, at least for some
special values of the energy. Due to the factorization pN+n(ε) = pN(ε)p̃n(ε) mentioned above,
the expansion of the wavefunction at any one of the energy eigenvalues {εn}N−1

n=0 terminates
after the first N terms. That is, because pN(εn) = 0, we can write

ψεn
(x) =

∑∞
n=0

pn(εn)φn(x) =
∑N−1

n=0
pn(εn)φn(x).

To illustrate our findings we present, as examples, two sets of quasi-exactly solvable problems
and their solutions. In this section, we are interested only in the σ = 0 class. In the appendix
we give extra examples of potentials that belong to this diagonal representation subclass.

3.1. Power potentials

As stated above equation (2.4), our choice of coordinate transformation y (x) and weight
function ω(y) is restricted by the important constraints listed in equations (2.4). These are,
of course, above and beyond the requirements of square integrability and compatibility with
the boundary conditions (i.e., compatibility with the domain of the Hamiltonian). As a simple
illustration, we start by reproducing the Bender–Dunne potential model [4] where y (x) = x
and ω(y) = yγ e−αyβ

. Square integrability and the boundary conditions require that α, β and
γ be real and positive. Moreover, we obtain the following functions in equations (2.4):

A(y) = y−2, B(y) = 2y−2(γ − αβyβ) (3.6a)

and

C(y) = y−2[γ (γ − 1) − αβ(2γ + β − 1)yβ + α2β2y2β ]. (3.6b)

Therefore, due to the fact that A(y) and B(y) are sums of terms proportional to y−2 and yβ−2,
then we end up with three possibilities for equations (2.4):



6314 A D Alhaidari

(1) σ = −2 and µ = β,
(2) σ = β − 2 and µ = β, or
(3) σ = 1

2β − 2 and µ = 1
2β.

Moreover, the potential function v(y) is chosen such that C(y) − v(y) must also be a sum
of terms that are only proportional to yσ and yσ±µ. Thus, we obtain the following three
corresponding potential functions,

(1) σ = −2: v(y) = α2β2y2(β−1) + v1y
−2 + v2y

β−2 + v3y
−β−2, (3.7a)

(2) σ = β − 2: v(y) = v1y
−2 + v2y

β−2 + v3y
2(β−1), (3.7b)

(3) σ = 1
2β − 2: v(y) = α2β2y2(β−1) + v1y

−2 + v2y
β−2 + v3y

1
2 β−2 (3.7c)

where v1, v2 and v3 are real potential parameters that are, at present, arbitrary but will
be restricted as we go. The diagonal representation (where σ = 0) is obtained only in
the second and third cases with β = 2 and β = 4, respectively. The second case, where
v(x) = v1x

−2 + v3x
2, corresponds to the 1D harmonic oscillator problem plus an inverse

square potential barrier or to the 3D isotropic oscillator with an orbital term where v1 = �(�+1).
However, the third case corresponds to the Bender–Dunne model [4] where

v(x) = 16α2x6 + v1x
−2 + v2x

2, (3.8a)

φn(x) = xγ e−αx4
x2n. (3.8b)

The constant v3 term in the potential was absorbed in the energy. Now, equations (3.6) together
with equation (3.8a) give

A0 = A+ = B0 = Cv
0 = 0, A− = 1, B+ = −8α, B− = 2γ,

Cv
+ = −8α(γ + 3/2) − v2, and Cv

− = γ (γ − 1) − v1.

Substituting these into equations (2.6) gives the coefficients for the three-term recursion
relation (2.5) as

an = 0, d+
n = −(2n + γ + 3/2)2 + v1 + 1

4 , and d−
n = 8α(2n + γ − 1/2) + v2.

To achieve quasi-exact solvability (bN−1 = 0) we can either (a) take d−
N = 0 by choosing the

potential parameter

v2 = −8α(2N + γ − 1/2),

or (b) take d+
N−1 = 0 by choosing the potential parameter

v1 = (2N + γ )(2N + γ − 1).

The corresponding recursion relations become

(a) εpn(ε) = −16α(N − n)pn−1(ε) − [
(2n + γ + 3/2)2 − v1 − 1

4

]
pn+1(ε), (3.9a)

(b) εpn(ε) = [8α(2n + γ − 1/2) + v2]pn−1(ε) + 4(N − n − 1)(N + n + γ + 1/2)pn+1(ε),

(3.9b)

where n = 1, 2, . . . , N − 1. The parameters in [4] correspond to case (a) with

α = 1
4 , N = J, v1 = γ (γ − 1), and γ = 2s − 1

2 ,
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where s is real and J = 1, 2, . . . . Therefore, the resulting three-term recursion relation (3.9a)
reads as follows,

εpn(ε) = −4(J − n)pn−1(ε) − 4(n + 1)(n + 2s)pn+1(ε), J − 2 � n � 1 (3.10)

which is identical to the recursion relation of equation (6) on page 7 of [4] for the Bender–
Dunne polynomial

[(−4)nn! �(n + 2s)]pn(ε).

Using the values of d+
n and d−

n one can evaluate �n for this problem as shown in
equation (2.9). Thus, we can write the orthogonality relation (3.1) for these two-parameter
polynomials that satisfy (3.10) as∫

ρ(ε)pn(ε)pm(ε) dε = �(J ) �(2s)

n! �(J − n)�(n + 2s)
δnm, (3.11)

which is identical to equation (12) in [4]. Now, due to the gamma function, �(J − n), in
the denominator, the norm of pn(ε) vanishes for all n � J . Consequently, the expansion
ψε = ∑

n pnφn terminates to the first J terms resulting in a normalizable wavefunction. This
is a verification example of the statement made below equation (3.5) that the physical solution
space for quasi-exactly solvable problems collapses into a finite N-dimensional subspace
whereas the remaining infinite one has zero norm states. Further details about this system
could be found in [4].

One should also make note of the new quasi-exact solution, which is associated with case
(b) for the related potential model

v(x) = 16α2x6 + (2N + γ )(2N + γ − 1)x−2 + v2 x2, (3.12)

where v2 is a continuous parameter restricted by the reality of the representation (b2
n > 0 for

all n � N − 2) to be larger than the critical value ṽ = −4α(2γ + 3). For positive values it
could be interpreted as the square of the oscillator frequency. Interpreting the second term in
potential (3.12) as the orbital �(� + 1)/x2, we conclude that the choice for N is restricted by
N � 1

2 (� + 1) so that γ maintains positivity. Writing v2 as ṽ + 16 α ξ with ξ > 0 and then
substituting the values of d+

n and d−
n from (3.9b) into equation (2.9) we obtain an expression

for �n which when used in (3.1) gives the following orthogonality relation for the energy
polynomials of this problem∫

ρ(ε)pn(ε)pm(ε) dε = (4α)n
�(N − n)�(N + γ + 1/2)�(n + ξ)

�(N)�(N + n + γ + 1/2)�(ξ)
δnm; n,m � N − 1.

(3.13)

For a given integer N the energy spectrum, {εn}N−1
n=0 , could be obtained as the roots of the

characteristic polynomial
∣∣hN

0 − εI
∣∣ (i.e. solution of det[	(ε)] = 0). For example, for N = 2

and N = 3 we obtain

ε = ±8
√

αξ(γ + 5/2), and ε = 0,±8
√

α
√

ξ(3γ + 23/2) + γ + 9/2,

respectively. Further analysis of these polynomials, their weight function and associated
moments, etc will not be pursued here but will be left for an appropriate mathematical setting.
Nonetheless, we give here a sample graphical illustration. Figure 1 shows the weight function
ρ(ε) for N = 10 and for a given set of values of the physical parameters. The ‘analytic
continuation’ method developed in [6] was used in the evaluation of this weight function.
Figure 2 is a plot of few low degree polynomials where we also show the corresponding
energy spectrum for N = 7.
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Figure 1. The weight function ρ(ε) associated with the orthogonality relation (3.13) for N = 10,
α = 1

4 , γ = 1 and v2 = 1
2 (i.e., ξ = 11/8).

Figure 2. Plot of a few low degree polynomials satisfying the recursion relation (3.9b) with the
same physical parameters as those in figure 1 but for N = 7. The energy eigenvalues {εn}6

n=0 are
indicated by filled black circles on the energy axis.

3.2. Exponential potentials

As a second example, we take y(x) = e−x and the weight function is the same as above,
ω(y) = yγ e−αyβ

. Consequently, we obtain the following functions in equations (2.4)

A(y) = 1, B(y) = 2γ + 1 − 2αβyβ, (3.14a)

and

C(y) = γ 2 + α2β2y2β − αβ(2γ + β)yβ. (3.14b)

Therefore, A(y) and B(y) are sums of the monomials y0 and yβ . Thus, we end up again with
three possibilities: (1) σ = 0 and µ = β, (2) σ = µ = β or (3) σ = µ = 1

2β. Moreover, the
potential function v(y) is chosen such that C(y) − v(y) must be a sum of the monomials yσ

and yσ±µ only. Therefore, we obtain the following three associated potentials,
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(1) σ = 0: v(y) = α2β2y2β + v1y
β + v2y

−β, (3.15a)

(2) σ = β: v(y) = v1y
β + v2y

2β, (3.15b)

(3) σ = 1
2β: v(y) = α2β2y2β + v1y

β + v2y
1
2 β (3.15c)

where v1 and v2 are real parameters. The second case corresponds to the Morse potential [7].
The third case is a generalization of the Morse potential α2β2 e−2βx + v1 e−βx (the decaying
exponential and its square) that includes the square root of the exponential e− 1

2 βx . However,
these two cases belong to the off-diagonal σ = +µ class which will be discussed in section 5.
The diagonal case is only the first one for which the potential function reads as follows,

v(x) = α2β2 e−2βx + v1 e−βx + v2 eβx, (3.16)

which is a combination of the Morse potential and an exponentially rising term. Now,
equations (3.14) together with equation (3.16) give

A0 = 1, A± = 0, B0 = 2γ + 1, B+ = −2αβ, B− = 0,

Cv
0 = γ 2, Cv

+ = −αβ(2γ + β) − v1, and Cv
− = −v2.

Inserting these values in equations (2.6) gives the coefficients for the three-term recursion
relation (2.5) as

an = −(βn + γ )2, d+
n = v2, and d−

n = 2αβ2
(
n − 1

2 + γ /β
)

+ v1.

To achieve quasi-exact solvability (bN−1 = 0) we should either make d+
N−1 = 0 by choosing

v2 = 0, which reduces the problem to the Morse potential, or make d−
N = 0 by choosing the

potential parameter v1 as

v1 = −2αβ2
(
N − 1

2 + γ /β
)
, (3.17)

with N = 1, 2, 3, . . . . Adapting the latter choice leads to the following recursion relation,

εpn(ε) = −(βn + γ )2pn(ε) − 2αβ2(N − n)pn−1(ε) + v2 pn+1(ε), (3.18)

where n = 1, 2, . . . , N − 1. Choosing v2 < 0 makes {bn�N−2} real and the problem becomes
quasi-exactly solvable as explained above. We can simplify (3.18) by rescaling length (i.e.,
λ) and the parameters of the problem as follows:

x → β−1x, ε → β2ε, γ → βγ, and v2 → β2v2, (3.19)

which is equivalent to making β = 1. As a result, the potential function will take the following
form,

v(x) = α2 e−2x − 2α(N + γ − 1/2) e−x − ξ e+x, (3.16)′

where we have written v2 as the negative of a real parameter ξ > 0. Moreover, the recursion
relation (3.18) will be recast as follows:

εpn(ε) = −(n + γ )2pn(ε) − 2α(N − n)pn−1(ε) − ξpn+1(ε). (3.18)′

Substituting the values of d+
n and d−

n into the product formula for �n in equation (2.9) we can
write the orthogonality relation for these polynomials as∫

ρ(ε)pn(ε)pm(ε) dε = (2α/ξ)n
�(N)

�(N − n)
δnm. (3.20)

This is another example showing that the physical solution space collapses into a finite N-
dimensional subspace since the remaining infinite one has zero norm states as evidenced by
the vanishing of the norm of the expansion coefficients, pn(ε), for all n � N . Now, the
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Figure 3. The weight function ρ(ε) associated with the orthogonality relation (3.20) for N = 20,
α = ξ = 20 and γ = 1.

Figure 4. Few of the low degree polynomials satisfying the recursion relation (3.18)′ for the
same physical parameters as those in figure 3 but for N = 7. The energy eigenvalues {εn}6

n=0 are
indicated by filled black circles on the energy axis.

energy spectrum {εn}N−1
n=0 could be obtained by any one of the three methods stated above. For

example, taking N = 1, we obtain ε = −γ 2, whereas for N = 2 the two eigen-energies are

ε = − 1
2 − γ (γ + 1) ±

√
(γ + 1/2)2 + 2αξ.

Analysis of the properties of the polynomials satisfying (3.18)′ will not be carried out here but
will be pursued in another more appropriate future setting. Nevertheless, we give in figure 3
a plot of the weight function ρ(ε) for N = 20 and for a given set of values of the potential
parameters. Figure 4 shows a few of these polynomials and the associated energy spectrum
for N = 7. Next, we turn attention to the off-diagonal representation where σ = ±µ.
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4. The off-diagonal representation (σ = −µ)

As stated in section 2, the energy polynomials pn(ε) in this representation are of degree
n
2

(
degree n−1

2

)
for even (odd) n. The three-term recursion relation (2.7) in this case with

σ = −µ reads as follows:

Cv
0 pn(ε) = ãnpn(ε) + (d−

n + ε)pn−1(ε) + d+
npn+1(ε). (4.1)

One is to observe the curious appearance of the polynomial variable ε in the factor multiplying
pn−1 rather than pn. This property together with the normalization p0 = 1 is, in fact,
the reason behind the behaviour of the degree of these polynomials. Additionally, these
polynomials cannot form an orthogonal set with respect to any positive measure. One can
prove this assertion by a counter example as follows. If one assumes that such positive
measure, ρ(ε), exists then we could write∫

ρ(ε)pn(ε)pm(ε) dε ∼ δnm.

Now, taking n = 0 and m = 1 shows that
∫

ρ(ε) dε = 0 since p0(ε) and p1(ε) are constants.
Thus, ρ(ε) cannot be positive definite. Now, according to the general formulation above, the
quasi-exact solvability condition in the off-diagonal representation is cN−1(ε) = 0 for all ε.
In the σ = −µ case this condition is equivalent to either d+

N−1 = 0 or d−
N + ε = 0. The

first one restricts some of the physical parameters in the set
{
A−, B−, Cv

−
}

to N-dependent
fixed values. The second one gives a solution of the problem at only one value of the energy
ε = εN = −d−

N ; other solutions are obtained by varying the value of N over the desired range
in N = 1, 2, . . . . Moreover, a real finite representation is obtained only if c2

n(ε) is positive
for all n � N − 2. This is an energy-dependent constraint that might not allow for physical
solutions below or above some energy threshold, ε̂. Due to this highly nontrivial property, one
may not be able to make further general observations about problems in this class but ought
to study each one individually. Now, if all conditions of quasi-exact solvability are satisfied
then the Hamiltonian-equivalent matrix shown in (2.12) becomes completely reducible as the
direct sum

h̃ = h̃N
0 ⊕ h̃N

1 .

h̃N
0 is a finite N × N real symmetric tridiagonal matrix, whereas h̃N

1 is an infinite-dimensional
complex matrix. Now, the condition of existence of nontrivial solutions to the recursion
relation (4.1) is det[	(ε)] = 0, where

	(ε) = h̃N
0 (ε) − Cv

0 I

and 	|q〉 = 0. This condition gives the energy spectrum {εn}N−1
n=0 for the case when the

solvability requirement is d+
N−1 = 0. However, for the alternative solvability requirement

ε = εN = −d−
N ,

det[	(εN)] = 0 gives in principle N possible values for the physical parameters that are
compatible with the solution of the problem at the energy ε = εN . These parameter values are
elements of the set that we refer to as the ‘parameter spectrum’.

We limit the illustrative examples to those in subsection 3.1 above where φn(x) =
xγ e−αxβ

xµn and with all parameters real and positive. Another non-exhaustive list of potentials
in this subclass is given in the appendix. The quasi-exactly solvable potentials that belong to
this subclass (σ = −µ) are obtained from equations (3.7a)–(3.7c) as follows:

(1) σ = −2, β = 2: v(x) = 4α2x2 + v1x
−2 + v3x

−4. (4.2a)
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(2) σ = −1, β = 1: v(x) = v1x
−2 + v2x

−1. (4.2b)

(3) σ = −1, β = 2: v(x) = 4α2x2 + v1x
−2 + v3x

−1. (4.2c)

Case (2) corresponds either to the Coulomb problem in 3D with non-zero orbital term or to
the 1D hydrogen atom [8] with an inverse square potential barrier. This is an exactly solvable
problem. Of course, all exactly-solvable problems are quasi-exactly solvable, but the reverse
is not true. Now, cases (1) and (3) are highly significant and interesting. Case (1) is for the
oscillator potential plus the highly singular inverse-quartic potential [9]. In this case and if we
write v1 = �(� + 1), where � is the angular momentum quantum number, then the coefficients
for the recursion relation (4.1) are:

Cv
0 = −(� + γ )(� − γ + 1), ãn = −4n(n + γ − 1/2),

d+
n = v3, and d−

n = 4α(2n + γ − 3/2)

giving

(� + γ )(� − γ + 1)pn(ε) = 4n(n + γ − 1/2)pn(ε)

− [4α(2n + γ − 3/2) + ε]pn−1(ε) − v3 pn+1(ε). (4.3)

However, the quasi-exact solvability condition, cN−1(ε) = 0, has two consequences. It either
requires v3 = 0 or

ε = εN = −4α(2N + γ − 3/2).

The first choice reduces (4.3) to a two-term recursion relation of the harmonic oscillator
problem, which is well known and exactly solvable [10]. The second makes the problem
(quasi-exactly) solvable at only one value of the energy, εN , but for several values of the
potential parameter v3 that must satisfy the equation det[	(εN)] = 0. To obtain the larger set
of solutions one must vary the value of the positive integer N. Now, it should be obvious that
det[	(εN)] = 0 gives a maximum of N permissible values for v3 (the parameter spectrum).
However, a real representation, in the subspace {χn}N−1

n=0 , is achievable (i.e., c2
n(εN) > 0 for

n � N − 1) only for negative values of v3. Therefore, if we write v3 in terms of a real
parameter ξ as v3 = −2α ξ 2 then we can recast relation (4.3) with ε = εN in terms of the
polynomials {qn} defined in section 2 as follows:

1

4αξ
(2n + γ + �)(2n + γ − � − 1)qn(ξ) = √

N − n qn−1(ξ) +
√

N − n − 1 qn+1(ξ). (4.4)

If we choose γ = � + 1 then an analysis of this recursion relation shows that det(	) = 0
results in symmetric ξ roots, one of them is always ξ = 0 with multiplicity two. It also gives
N − 2 (N − 3) nonzero roots for even (odd) N, respectively. As examples, for N = 4, N = 5
we obtain

αξ = ±
√

6
(
� + 5

2

)(
� + 7

2

)
,

αξ = ±2
√

3
(
� + 5

2

)(
� + 7

2

)(
� + 9

2

)/(
5� + 41

2

)
,

respectively. These two cases constitute the lowest nontrivial solutions for the potential (4.2a)
with

v1 = �(� + 1), v3 = −2α ξ 2

and at the energies

ε = −4α(� + 15/2) and ε = −4α(� + 19/2),

respectively.
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Case (3) is uniquely significant due to the fact that it is a new attempt (among very
few) to obtain exact solutions to this interesting problem that combines the two most popular
potentials in quantum mechanics; the oscillator (with frequency 2α) and Coulomb (with charge
v3) [11,12]. Using equations (3.6) and equation (4.2c) we obtain the following recursion
coefficients,

Cv
0 = −v3, ãn = 0, d+

n = −(n + γ + 1/2)2 + 1
4 + v1, and d−

n = 4α(n + γ − 1/2)

giving

v3 pn(ε) = −[4α(n + γ − 1/2) + ε]pn−1(ε) +
[
(n + γ + 1/2)2 − 1

4 − v1
]
pn+1(ε). (4.5)

This is identical to the recursion relation obtained for the same problem by Alberg and Wilets
in [12] as equation (12) on page 9 with v1 = �(� + 1). In the notation of [12]:

v3 = 2λ, γ = � + 1, α = c/2, and ε → −2ε.

Now, one of the two quasi-exact solvability conditions (d+
N−1 = 0) dictates that

v1 = (N + γ )(N + γ − 1),

and maps (4.5) into

v3 pn(ε) = −[4α(n + γ − 1/2) + ε]pn−1(ε) − (N − n − 1)(N + n + 2γ )pn+1(ε). (4.6)

Moreover, reality of the representation (i.e., c2
n(ε) is positive for all n � N − 2) requires that

the energy be above the threshold ε̂ = −2α(2γ + 1). The energy spectrum could be obtained
as solutions of det[	(ε)] = 0. For example, when N = 2, we obtain the energy eigenvalue

ε = −2α(2γ + 1) + v2
3

/
2(γ + 1).

On the other hand, if N = 3 then

ε = − 6α

3γ + 5
(γ + 1)(2γ + 3) +

v2
3

/
2

3γ + 5
.

Now, the other solvability condition (d−
N + ε = 0) shows that a quasi-exact solution is obtained

at the energy

ε = εN = −4α(N + γ − 1/2),

which is equation (13) in [12]. But in this case the permissible values for the potential
parameter v3 must satisfy the equation det[	(εN)] = 0. Writing v1 = �(� + 1) and repeating
the same analysis that was done above for the potential (4.2a) with ε = εN leads to the
following recursion relation in terms of the polynomials {qn}:
v3 qn(v3) = 2

√
α(N − n)(n + γ + �)(n + γ − � − 1) qn−1(v3)

+ 2
√

α(N − n − 1)(n + γ + � + 1)(n + γ − �) qn+1(v3). (4.7)

Reality of the representation requires that γ � � + 1. Moreover, det(	) = 0 for this recursion
relation produces the parameter spectrum which consists of N real values for the potential
parameter v3 symmetrically distributed around v3 = 0. For N = 2 and N = 3, where the
energies are

ε = ε2 = −4α(γ + 3/2) and ε = ε3 = −4α(γ + 5/2),

these values are

v3 = ±2
√

α(γ + � + 1)(γ − �) and v3 = 0,±2α
1
2

√
γ (3γ + 5) − 3�(� + 1) + 2,

respectively. For further analysis and details of the solution of the problem the reader may
consult [12]. Next, we investigate the subclass of the off-diagonal representation where
σ = +µ.
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5. The off-diagonal representation (σ = +µ)

The expansion coefficients of the wavefunction in this subclass satisfy the following three-term
recursion relation:

Cv
0 pn(ε) = ãnpn(ε) + d−

n pn−1(ε) +
(
d+

n + ε
)
pn+1(ε), n � 1. (5.1)

The appearance of the recursion variable ε in the factor multiplying pn+1 rather than pn

together with the normalization p0 = 1 is the reason that these are not polynomials but
ratios of polynomials. However, if the quasi-exact solvability condition is satisfied and the
normalization is changed from p0 = 1 to pN−1 = 1, then we can reverse the recursion process
in (5.1) by rewriting it as follows,

pn(ε) = −(
d−

n+1

)−1[
an+1pn+1(ε) +

(
d+

n+1 + ε
)
pn+2(ε)

]
, n = N − 2, N − 3, . . . , 1, (5.2)

and with pN ≡ 0. This relation should be supplemented by the initial relation of (5.1) that
reads

p0(ε) = −[(
d+

0 + ε
)/

a0
]
p1(ε),

which is the final relation for (5.2). Consequently, the polynomials pn(ε) in this representation
with the choice of normalization pN−1 = 1 are of degree N−n−1

2

(
degree N−n−2

2

)
for odd (even)

N−n, where n = 0, 1, . . . , N −1. One should observe that the choice of normalization in (5.1)
is arbitrary but has to be fixed once and for all. This is due to the fact that a solution of (5.1) is
unique modulo an arbitrary nonzero function of ε that is independent of n. We took pN−1(ε) as
the arbitrary function. One can also show that in this subclass, and similar to the previous one
where σ = −µ, these polynomials cannot form an orthogonal set with respect to any positive
energy measure. Moreover, the quasi-exact solvability condition d−

N = 0 restricts some of
the physical parameters in the set

{
A+, B+, C

v
+

}
to only discrete values. The energy spectrum

could be obtained by the requirement det[	(ε)] = 0, where again 	(ε) = h̃N
0 (ε) − Cv

0 I and
	|q〉 = 0. On the other hand, the alternative solvability condition, d+

N−1 + ε = 0, gives a
solution at ε = εN = −d+

N−1 while restricting the problem parameters to satisfy the constraint
det[	(εN)] = 0 (the parameter spectrum). To obtain a larger set of solutions, one varies the
value of the integer N. The real representation requirement (that is, c2

n(ε) is positive for all
n � N − 2) could force an energy threshold on the physical solutions. Moreover, complete
reducibility of the representation and reduction of the solution space is similar to that in
the previous section. Illustrative examples will be limited to those problems presented in
subsection 3.2 of section 3 where y(x) = e−x . Other examples in this subclass are given in
the appendix.

Among the three potentials in subsection 3.2 above, the only interesting one which belongs
to the off-diagonal representation σ = +µ is (3.15c) with σ = µ = 1

2β and for the following
generalization of the Morse potential

v(x) = α2β2 e−2βx + v1 e−βx + v2 e− 1
2 βx. (5.3)

Nonetheless, potential (3.15b) does belong to the subclass σ = +µ but is not of interest to
our study since it corresponds to the exactly solvable S-wave Morse potential. Now, rescaling
length and the problem parameters as done in (3.19) will have the equivalent effect of choosing
β = 1. Thus, the coefficients of the recursion relation (5.1) associated with the potential (5.3)
are:

Cv
0 = −v2, ãn = 0, d+

n = − 1
4 (n + 2γ + 1)2, and d−

n = α(n + 2γ ) + v1.

Moreover, the quasi-exact solvability condition d−
N = 0 requires that v1 = −α(N + 2γ ) giving

v2 pn(ε) = α(N − n)pn−1(ε) +
[

1
4 (n + 2γ + 1)2 − ε

]
pn+1(ε). (5.4)
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Requiring reality of the representation (that is, c2
n(ε) is positive for all n � N −2) dictates that

the energy should be below the threshold ε̂ = (γ + 1/2)2. As stated above, the energy spectrum
could be obtained in this case as a solution of the characteristic equation det[	(ε)] = 0. For
example, with N = 2 we obtain

ε = (γ + 1/2)2 − v2
2

/
α,

whereas for N = 3 the result is

ε = 2
3 (γ + 1/2)2 + 1

3 (γ + 1)2 − v2
2

/
3α.

On the other hand, the alternative solvability constraint d+
N−1 + ε = 0 gives a solution of the

problem at the energy

ε = εN = (γ + N/2)2.

In this case, the expansion coefficients of the wavefunction at this energy could be thought of
as polynomials in the potential parameter v2 of degree n and satisfying the three-term recursion
relation

−v2 pn(v2) = [α(n + 2γ ) + v1]pn−1(v2) + 1
4 (N − n − 1)(N + n + 4γ + 1)pn+1(v2). (5.5)

Reality of the representation requires that v1 > −α(2γ +1). Moreover, det[	(εN)] = 0 relates
N values of the two parameters v1 and v2 (the parameter spectrum) for obtaining a solution at
ε = εN . As examples, if we write

v1 = −α(2γ + 1) + αξ,

with ξ > 0, then for ε = ε2 = (γ + 1)2 a solution is obtained for

v2
2 = αξ(γ + 3/4),

whereas for ε = ε3 = (γ + 3/2)2 a solution is obtained for

v2
2 = α[2ξ(γ + 1) + (ξ + 1)(γ + 5/4)].

In the appendix we list, without giving details, a few other examples of quasi-exactly solvable
potentials indicating the class and subclass to which they belong. The square integrable basis
and associated recursion relations are also given for each potential.

6. Conclusion and perspectives

Using a discrete square integrable basis that satisfies the boundary conditions, we construct a
solution space of the wave equation. We require that the action of the wave operator on any
element of the basis is a combination of one-step raising and lowering operations. This makes
the wave equation equivalent to a three-term recursion relation satisfied by the expansion
coefficients of the wavefunction (equations (2.5) and (2.7)). Moreover, the resulting matrix
representation of the wave operator becomes tridiagonal. By transformation into a new basis,
the recursion relation becomes symmetric (equations (2.5)′ and (2.7)′). Imposing a simple
condition (bN−1 = 0 or cN−1 = 0 for a given integer N) results in the complete reduction of
the solution space into finite and infinite components. Proper reality constraints (e.g., b2

n < 0
for n � N ) make the finite representation Hermitian and exactly solvable whereas the infinite
representation becomes complex and is associated with zero norm states. The finite exact
solution is either one of the two kinds. We obtain either the standard quasi-exact solution,
which is associated with part of the energy spectrum at a specific value of the potential
parameters, or a new class of quasi-exact solutions at one given value of the energy but for a
set of values of potential parameters (the ‘parameter spectrum’). To obtain a larger solution
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space in the latter class one could vary the energy by simply changing the value of the integer
N. The work in this paper presents a unified treatment for these two classes of solutions. It
also exploits the well-established mathematical tools associated with the theory of orthogonal
polynomials in obtaining the analytic solutions. Several non-exhaustive examples are given
to illustrate the utility and applicability of the formulation.

One final remark is that these developments could also be extended to relativistic quantum
mechanics in a straightforward manner. Currently, work is in progress to implement the same
approach to the Dirac equation with various potential couplings including vector, scalar and
pseudo-scalar.
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Appendix. Further examples

No general criteria were given for the selection of basis in the wavefunction expansion,
beyond square integrability and compatibility with the boundary conditions, except for the
requirements listed as equations (2.4). Nonetheless, it is easier to give an ansatz for the weight
function ω(y). Typically, for a system with bounded configuration space, x ∈ [x−, x+], it
could be written as

ω(y) = yγ (1 − y)α(1 + y)β

with some conditions on the real parameters α, β and γ . This could always be done by
rescaling to x ∈ [−1, +1]. On the other hand, for an infinite or semi-infinite coordinate space,
the weight function could be written as ω(y) = yγ e−αyβ

with a proper choice of parameters.
However, it is more difficult to propose a coordinate transformation function y (x) that would
be compatible with the requirements in equations (2.4). Nevertheless, we will attempt to give
a particular formal solution as follows. Equation (2.4a) could be rewritten as

dy

dx
= y

√
A0yσ + A+yσ+µ + A−yσ−µ. (A.1)

Let us assume that we can write

(1) For σ = 0: A0 + A+y
+µ + A−y−µ = (τ0y

µ/2 + η0y
−µ/2)2, (A.2a)

(2) For σ = +µ: A0y
+µ + A+y

+2µ + A− = (τ+y
µ + η+)

2, (A.2b)

(3) For σ = −µ: A0y
−µ + A+ + A−y−2µ = (η−y−µ + τ−)2, (A.2c)

for some parameters {τ0, τ±, η0, η±}. Then y (x) could be written as solutions to the following
nonlinear integral equations:

(1) For σ = 0: τ0

∫
y1+ µ

2 dx + η0

∫
y1− µ

2 dx = y, (A.3a)

(2) For σ = +µ: τ+

∫
y1+µ dx + η+

∫
y dx = y, (A.3b)
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(3) For σ = −µ: η−
∫

y1−µ dx + τ−
∫

y dx = y, (A.3c)

respectively. However, lacking the experience in the solution of such equations we will be
contented with a trial-and-error scheme in proposing the following two sets of examples.
Each set starts with a choice of basis followed by a list of all non-empty classes of quasi-
exact solutions corresponding to σ = 0,±µ. For each class we give the associated potential
function and coefficients of the three-term recursion relation. Subsequently, the two solvability
constraints are imposed and the specific recursion relation for that subclass is written down
explicitly. Additionally, the orthogonality relation is given for each case that the polynomials
form an orthogonal set. Reference is made in the examples to the following N × N tridiagonal
symmetric matrix:

J =




j0 k0

k0 j1 k1 0
k1 j2 k2

k2 × ×
× × ×

0 × jN−2 kN−2

kN−2 jN−1




(A.4)

Examples (I): y(x) = 1 − e−x , ω(y) = yγ (1 − y)α: x ∈ [0,∞] → y ∈ [0, 1]

(I.1) σ = −µ = −1, v(x) = v1

1 − e−x
+

v2

(1 − e−x)2
:

Cv
0 = −2γ (γ + α − 1/2) − v1 (A.5a)

ãn = 2n(n + 2γ + α − 1/2) (A.5b)

d+
n = −(n + γ + 1/2)2 + v2 + 1

4 (A.5c)

d−
n = −(n + γ + α − 1)2 (A.5d)

(I.1.1) d+
N−1 = 0 → v2 = (N + γ )(N + γ − 1):

−v1pn(ε) = 2(n + γ )
(
n + γ + α − 1

2

)
pn(ε)

+ (N − n − 1)(N + n + 2γ )pn+1(ε) + [ε − (n + γ + α − 1)2]pn−1(ε). (A.6)

Energy spectrum is a solution of det[J (ε)] = 0, where

jn = v1 + 2(n + γ )
(
n + γ + α − 1

2

)
(A.7a)

k2
n = (N − n − 1)(N + n + 2γ )[ε − (n + γ + α)2] (A.7b)

(I.1.2) ε = −d−
N → εN = −d−

N = (N + γ + α − 1)2, v2 > (N + γ )(N + γ − 1) ≡ ṽ:

−v1pn(v1) = 2(n + γ )
(
n + γ + α − 1

2

)
pn(v1) + [(N − n − 1)(N + n + 2γ ) + ξ 2]pn+1(v1)

+ (N − n)(N + n + 2γ + 2α − 2)pn−1(v1), (A.8)

where v2 = ṽ + ξ 2.
Parameter spectrum is v1 = v1(ξ, γ, α,N) = −eigenvalues of J with

jn = 2(n + γ )
(
n + γ + α − 1

2

)
(A.9a)

k2
n = (N − n − 1)(N + n + 2γ + 2α − 1)[(N − n − 1)(N + n + 2γ ) + ξ 2] (A.9b)
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∫
ρ(v1)pn(v1)pm(v1) dv1 = (−)n

�(N − n)�(N + 2γ + 2α − 1)

�(N)�(N + n + 2γ + 2α − 1)

× �(n + γ + τ + 1/2)�(n + γ − τ + 1/2)

�(γ + τ + 1/2)�(γ − τ + 1/2)
δnm, (A.10)

where τ =
√

(N + γ − 1/2)2 + ξ 2 and n,m � N − 1.
Examples (II): y(x) = sech(x), ω(y) = yγ (1 − y2)α/2: x ∈ [0,∞] → y ∈ [0, +1]

(II.1) σ = 0, µ = 2, v(x) = α(α − 1)csch(x)2 + v1sech(x)2 + v2 cosh(x)2 :

an = (2n + γ )2 (A.11a)

d+
n = v2 (A.11b)

d−
n = (2n + γ + α − 1)(2n + γ + α − 2) + v1 (A.11c)

(II.1.1) d+
N−1 = 0 → v2 = 0: exactly solvable Pöschl–Teller.

(II.1.2) d−
N = 0 → v1 = −(2N + γ + α − 1)(2N + γ + α − 2)

εpn(ε) = −(2n + γ )2pn(ε) + v2 pn+1(ε) − 4(N − n)
(
N + n + γ + α − 3

2

)
pn−1(ε) (A.12)

where v2 < 0.∫
ρ(ε)pn(ε)pm(ε) dε = (−4/v2)

n �(N − n)�(N + γ + α − 1/2)

�(N)�(N + n + γ + α − 1/2)
δnm, n,m � N − 1.

(A.13)

Energy spectrum is the set of eigenvalues of J with

jn = −(2n + γ )2 (A.14a)

k2
n = −4v2(N − n − 1)

(
N + n + γ + α − 1

2

)
(A.14b)

(II.2) σ = µ = 1, v(x) = α(α − 1)csch(x)2 + v1sech(x)2 + v2sech(x) :

Cv
0 = −v2 (A.15a)

ãn = 0 (A.15b)

d+
n = −(n + γ + 1)2 (A.15c)

d−
n = (n + γ + α)(n + γ + α − 1) + v1 (A.15d)

(II.2.1) d−
N = 0 → v1 = −(N + γ + α)(N + γ + α − 1):

v2 pn(ε) = (N − n)(N + n + 2γ + 2α − 1)pn−1(ε) + [(n + γ + 1)2 − ε]pn+1(ε), (A.16)

where ε � ε̂ = (γ + 1)2.
Energy spectrum is the solution of det[J (ε)] = 0, where

jn = −v2 (A.17a)

k2
n = (N − n − 1)(N + n + 2γ + 2α)[(n + γ + 1)2 − ε] (A.17b)

(II.2.2) ε = −d+
N−1 → εN = −d+

N−1 = (N + γ )2, v1 > −(γ + α)(γ + α + 1) ≡ ṽ:

−v2pn(v2) = (N − n − 1)(N + n + 2γ + 1)pn+1(v2) + [(n − 1)(n + 2γ + 2α) + ξ 2]pn−1(v2),

(A.18)

where v1 = ṽ + ξ 2.
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Parameter spectrum is v1 = v1(ξ, γ, α,N) = −eigenvalues of J with

jn = 0 (A.19a)

k2
n = (N − n − 1)(N + n + 2γ + 1)[n (n + 2γ + 2α + 1) + ξ 2] (A.19b)∫

ρ(v2)pn(v2)pm(v2)dv2 = �(N − n)�(N + 2γ + 1)

�(N)�(N + n + 2γ + 1)

× �(n + γ + α + τ + 1/2)�(n + γ + α − τ + 1/2)

�(γ + α + τ + 1/2)�(γ + α − τ + 1/2)
δnm, (A.20)

where τ =
√

(γ + α + 1/2)2 − ξ 2 and n,m � N − 1.

(II.3) σ = µ = 2, v(x) = α(α − 1)csch(x)2 + v1 sech(x)2 + v2 sech(x)4 :

Cv
0 = −(γ + α)(γ + α + 1) − v1 (A.21a)

ãn = 4n(n + γ + α + 1/2) (A.21b)

d+
n = −(2n + γ + 2)2 (A.21c)

d−
n = v2 (A.21d)

(II.3.1) d−
N = 0 → v2 = 0: exactly solvable Pöschl–Teller.

(II.3.2) ε = −d+
N−1 → εN = −d+

N−1 = (2N + γ )2, v2 > 0:

−v1pn(v1) = (2n + γ + α)(2n + γ + α + 1)pn(v1) + v2 pn−1(v1)

+ 4(N − n − 1)(N + n + γ + 1)pn+1(v1) (A.22)

Parameter spectrum is v1 = v1(v2, γ, α,N) = −eigenvalues of J with

jn = (2n + γ + α)(2n + γ + α + 1) (A.23a)

k2
n = 4v2(N − n − 1)(N + n + γ + 1) (A.23b)∫

ρ(v1)pn(v1)pm(v1) dv1 = (4/v2)
n �(N)�(N + n + γ + 1)

�(N − n)�(N + γ + 1)
δnm. (A.24)
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